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ABSTRACT.  

We propose a data assimilation algorithm for the  Navier-Stokes equations, based on the 

Azouani, Olson, and Titi (AOT) algorithm, but applied to the  Navier-Stokes-Voigt 

equations. Adapting the AOT algorithm to regularized versions of Navier-Stokes has been 

done before, but the innovation of this work is to drive the assimilation equation with 

observational data, rather than data from a regularized system. We first prove that this new 

system is globally well-posed. Moreover, we prove that for any admissible initial data, the L2 

and H1 norms of error are bounded by a constant times a power of the Voigt-regularization 

parameter α > 0, plus a term which decays exponentially fast in time. In particular, the large-

time error goes to zero algebraically as α goes to zero. Assuming more smoothness on the 
initial data and forcing, we also prove similar results for the H2 norm. 

 

I INTRODUCTION  

 The finite number of degrees of 

freedom such as determining modes, 

determining nodes, determining volume 

elements has been proved by Korn  for 

some αmodels in fluid mechanics, 
including Navier-Stokes-α, Leray-α and 
Navier-Stokes-ω equations.  Azouani and 
Titi proposed a new feedback control for 

controlling general dissipative evolution 

equations using any of the determining 

systems of parameters (modes, nodes, 

volume elements, etc...) without requiring 

the presence of separation in spatial scales, 

i.e. without assuming the existence of an 

inertial manifold. Then it is applied to 

stabilize the nonlinear reaction-diffusion 

equations by using finite parameters 

feedback controls; see also a more recent 

result for damped nonlinear wave 

equations. The computational study of a  

 

 

simple finite dimensional feedback control 

algorithm for stabilizing solutions to some 

nonlinear dissipative systems was 

presented. In this paper, following the 

general lines of the approach we propose a 

simple finite-dimensional feedback control 

scheme for stabilizing stationary solutions 

of Navier-Stokes-Voigt equations with 

periodic boundary conditions. Here the 

feedback control scheme only uses finitely 

many of observables and controllers, such 

as finite number of determining Fourier 

modes, determining nodes, and 

determining finite volumes for a unified 

theory of such determining functional. The 

paper is organized as follows. For 

convenience of the reader, we recall the 

functional setting of the Navier-Stokes-

Voigt equations. we first stabilize an 

unstable stationary solution to the Navier-
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Stokes-Voigt equations (in both cases of 

dimension two and dimension three) by 

using finite-dimensional feedback control 

scheme employing finite volume elements 

or projection onto Fourier modes. Then in 

the case of two dimensions, we show that 

an unstable stationary solution can be 

stabilized by using a finite-dimensional 

feedback control employing finitely many 

nodal values. 

 The NS-Voigt equations were first 

proposed by Oskolkov model for Kelvin–
Voigt fluids, but were later viewed as a 

regularization for the NS equations where 

also the Euler-Voigt equations were first 

introduced and studied. The Voigt-

regularization is related to the wider class 

of α-models, including the NS-α (NS-α) 
model and the Leray-α model. The Voigt 
model enjoys two features that the other α-

models are not known to have in the 3D 

case. First, it is known to be globally well-

posed in the inviscid case. Second, in the 

viscous case, it is well-posed in the 

physical case of “noslip” homogeneous 

Dirichlet boundary conditions, with no 

need to impose artificial boundary 

conditions. Although we only work in 2D, 

we focus on the NS-Voigt model due in 

part to these attractive features, and also 

due to its simplicity. The study of the 

AOT-algorithm applied to other models 

but still driven by observable data, and the 

errors resulting from the mismatch, will be 

the subject of a forthcoming work. 

 In this paper, following the general 

lines of the approach introduced, we 

propose a simple finite-dimensional 

feedback control scheme for stabilizing 

stationary solutions of Navier-Stokes-

Voigt equations with periodic boundary 

conditions. Here the feedback control 

scheme only uses finitely many of 

observables and controllers, such as finite 

number of determining Fourier modes, 

determining nodes, and determining finite 

volumes for a unified theory of such 

determining functionals. 

2. MODEL FORMULATION 

We follow the same notation as introduced 

parametrize the surface S ⊂ R
3
 by the local 

coordinates θ, ϕ, i.e., 

x : R
2⊃ U → R3

 ; (θ, ϕ) → x (θ, ϕ) . 

Thus, the embedded R
3
 representation of 

the surface is given byS = x(U). The unit 

outer normal ofSat point x is denoted by 

ν(x). We denote by (∂θ x, ∂ϕx ) the 

canonical basis to describe the (tangential) 

velocity v(x) ∈TxS, i.e., v = v
θ∂θ x + v 

ϕ∂ϕx 

at a point x ∈ S. In a (tubular) 

neighborhoodΩδ of S, defined a signed-

distance functionare defined by 

 

respectively, for 𝑥∈Ωδand x the 

corresponding coordinate projection. To 

embed the R3 vector space structure to the 

tangential bundle of thesurface, we use the 

pointwise defined normal projection 

 

However, the rotSrotSv term leads to a 

heavy workload in terms of 

implementation and assembly time, as 36 

second order operators, 72 first order 
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operators, and 36 zero order operators 

have to be considered. This effort can 

drastically be reduced by rotating the 

velocity field in the tangent plane. Instead 

ofDv we consider w = ν ×v as unknown. 
Applying ν×  
 

2.1ENERGY BUDGET FOR THE NSV 

MODEL 

The global regularity result for solutions of 

the Navier-Stokes-Voigt equations 

established in [30] implies that the 

following energy equality holds for every t ∈ [0, ∞): 

 
Similarly, the global regularity results 

established in [2] imply that the solutions 

of the NSV equations in the inviscid (i.e. 

Euler-Voigt model, ν = 0) and unforced 
setting, f = 0, satisfy for every t ∈ R: 

Therefore, the conserved quantity in the 

inviscid and unforced setting of the NSV 

(i.e. Euler-Voigt) model is 

Then, we can write the projected Navier-

Stokes-Voigt equations on the shell [κ ′ , 
κ′′) 

 
 

2.2 Two-phase Navier-Stokes equations 

with Boussinesq-Scriven interface 

stresses 

The two Navier-Stokes equations in Ωi ,i = 

1, 2, in (2.1) together with the interfacial 

conditions can be reformulated in one 

Navier-Stokes equation on the whole 

domain Ω with a surface tension force 
term localized at the interface. Combining 

this with the level set method leads to the 

following model for the two-phase 

problem in Ω×[0, T], with unknowns u(x, 
t), p(x, t) and the level set function φ(x, t) 
  

We now specify the domain, boundary and 

initial conditions that are used in the 

numerical experiments in section 4. For Ω 
we take a rectangular box with lengths Lx, 

Ly, Lz in the three coordinate directions. 

The interface Γ(0) is defined as a sphere at 
the centreline of the box with radius r. The 

subdomain Ω1(0) is the interior of this 

sphere. The boundary conditions for u are 

as follows. On the z-boundaries (z = ±Lz) 

we use periodic boundary conditions. On 

the y-boundaries we take Dirichlet no slip 

conditions (u = 0). On the x-inflow 

boundary we prescribe a Poiseuille profile 

that is constant in z-direction and has the 

form 

3. RESULTS AND DISCUTION  

 A general form of a level-set 

function for a n-torus can be written as 

L(x) = Qni=1 T(x − mi) − (n − 1) δ with a 
constant δ > 0 and the midpoints of the tori 
mi ∈ R 3 for i = 1, . . ., n. In the following 

examples, we consider the fully discrete 

scheme for Problem 2 and use Re = 10, τ = 
0.1, α = 3000, R = 1, and r = 0.5. For the 
Gaussian curvature κ, we use the analytic 
formula. The initial condition is considered 

to be v0 = rotS ψ0 = ν × gradS ψ0 with ψ0 
= 1 2 (x + y + z) which ensures the 

incompressibility constraint. Figure 4 
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(Multimedia view) (top) shows the time 

evolution on the 1-torus with m1 = 0. The 

initial state has four defects, two vortices 

with Indxv = +1, indicated as red dots, and 

two saddles with Indxv = 1, indicated as 

blue dots (one vortex and one saddle are 

not visible). These defects annihilate 

during the evolution. The final state is 

again a Killing vector field without any 

defects. For n > 1, the rotational symmetry 

is broken and Killing vector fields are no 

longer possible. We thus expect 

dissipation of the kinetic energy and 

convergence to v = 0 for any initial 

condition. Figure 4 (Multimedia view) 

(middle) shows the time evolution on a 2-

torus where we have used the midpoints 

m1 = (1.2, 0, 0) and m2 = m1 as well as δ 
= 1. The initial state has two vortices and 

four saddles and thus P x∈v −1 (0) Indxv = 
−2. Two vortex-saddle pairs annihilate 

each other and the final defect 

configuration consists of two saddles 

located at the center of the 2-torus (one is 

not visible). The velocity field decays 

towards v = 0. Figure 4 (Multimedia view) 

(bottom) shows the time evolution on a 3-

torus with midpoints m1 = (1.2,0.75, 0), 

m2 = (1.2, 0.75, 0), and m3 = (0, 1.33, 0) 

as well as δ = 10. Initially we have three 
vortices and seven saddles and thus P x∈v 

−1 (0) Indxv = −4, which is also fulfilled 
for the final defect configuration with two 

vortices and six saddles at the center of the 

3-torus (one vortex and three saddles are 

not visible). Again the velocity field 

decays towards v = 0. To show the 

differences in the evolution on the n-tori 

before and after the final defect 

configuration is reached, we consider the 

H 1 semi-norm of the rescaled velocity 

field v¯  = Dv/kDvkL2 . If the defects do 

not move, this quantity is constant. Figure 

5 shows the evolution over time together 

with the decay of the kinetic energy E = 1 

2 ∫S kDvk 2 dS. These results clearly show 
the strong interplay between topology, 

geometric properties, and defect positions.  

4. CONCLUSIONS 

 We have proposed a discretization 

approach for the incompressible surface 

Navier-Stokes equation on general 

surfaces independent of the genus g(S). 

The approach only requires standard 

ingredients which most finite element 

implementations can offer. It is based on a 

reformulation of the equation in Cartesian 

coordinates of the embedding R 3 , 

penalization of the normal component, a 

Chorin projection method, and 

discretization in space by globally 

continuous, piecewise linear Lagrange 

surface finite elements for each 

component. A further rotation of the 

velocity field leads to a drastic reduction 

of the complexity of the equation and the 

required computing time. The fully 

discrete scheme is described in detail and 

its accuracy is validated against a DEC 

solution on a 1-torus. The interesting 

interplay between the topology of the 

surface, its geometric properties, and 

defects in the flow field are shown on n-

tori for n = 1, 2, 3. Even if the formulation 

of the incompressible surface Navier-

Stokes equation is relatively old,15,22,34 

numerical treatments on general surfaces 

are very rare. We are only 012107-6 S. 

Reuther and A. Voigt Phys. Fluids 30, 

012107 (2018) and therefore expect the 

proposed approach to initiate a broader use 

and advances in the mentioned 
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applications in Sec. I. We further expect it 

to be the basis for further developments, 

e.g., coupling of the surface flow with bulk 

flow in two-phase flow problems, as, e.g., 

using a vorticity-stream function approach 

or in  4 within an alternative formulation 

based on the bulk velocity and projection 

operators. Another extension considers 

evolving surfaces. With a prescribed 

normal velocity, this has already been 

again using a vorticity-stream function 

approach. The corresponding equations are 

using a global variational approach as a 

thin-film limit. A mathematical derivation 

of the evolution equation for the normal 

component is still controversial. The 

derivation is based on local conservation 

of mass and linear momentum in tangential 

and normal directions, while the derivation 

is based on local conservation of mass and 

total linear momentum. The resulting 

equations differ. However, in the special 

case of a stationary surface, all these 

models coincide with the incompressible 

surface Navier-Stokes equation In all 

considered examples, the Gaussian 

curvature was analytically given. 

However, this is not necessary. For 

appropriate algorithms to compute κ from 

a given surface triangulation 
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